labeled drawing of the dimer; crystal packing is shown in Fig. 2.

Discussion. The dimer is joined across an inversion center by an $\left(\eta^{5}, \eta^{1}\right)$-Cp* group which bridges the two symmetry-related Sc atoms. The η^{1}-methylene (C6) has been formed as the result of $\mathrm{C}-\mathrm{H}$ activation of a Cp^{*} methyl group. A somewhat surprising result is that, in all other regards, the bonding is very similar to that determined for $\mathrm{Cp}_{2}^{*} \mathrm{ScCH}_{3}$ (Thompson et al., 1987). The (η^{5}, η^{1})-ring remains planar with a maximum deviation of only $0.22 \AA$ from the least-squares plane calculated for C 1 through C10. The geometry about C6 is essentially tetrahedral; the angles $\mathrm{C} 1-\mathrm{C} 6-\mathrm{Sc}^{\prime}, \mathrm{C} 1-\mathrm{C} 6-\mathrm{H} 6 A$, $\mathrm{C} 1-\mathrm{C} 6-\mathrm{H} 6 B$ and $\mathrm{H} 6 A-\mathrm{C} 6-\mathrm{H} 6 B$ are 118.9, 107.3, 104.8 and 98.1°, respectively, giving an average value of 107.3 (8.6) ${ }^{\circ}$. The $\mathrm{H} 6 A-\mathrm{C} 6-\mathrm{H} 6 B$ angle is slightly compressed $\left(98.1^{\circ}\right)$ while the $\mathrm{C} 1-\mathrm{C} 6-\mathrm{Sc}^{\prime}$ angle is somewhat opened (118.9°). The $\mathrm{Sc}^{\prime} \cdots \mathrm{H} 6 \mathrm{~A}$ and $\mathrm{Sc}^{\prime} \cdots \mathrm{H} 6 B$ distances are 2.76 (3) and 2.79 (3) \AA indicating that there is no agostic interaction for the $\alpha-\mathrm{H}$ atoms with the Sc center. The $\mathrm{Cp}^{*}-\mathrm{Sc}-\mathrm{Cp}^{*}$ angle (141.8°) is approximately the same as for Cp_{2}^{*}
$\mathrm{ScCH}_{3}\left(144.7^{\circ}\right)$ suggesting that formal replacement of a methyl ligand with a bulkier $\left(\eta^{5}, \eta^{1}\right)-\mathrm{Cp}^{*}$ group as the alkyl does not significantly perturb the Sc- Cp^{*} bonding.

This work was supported by the USDOE Office of Basic Energy Sciences (Grant No. DE-FG0385ER113431).

References

Burger, B. J., Thompson, M. E., Cotter, W. D. \& Bercaw, J. E. (1990). J. Am. Chem. Soc. 112, 1566-1577.

Cromer, D. T. (1974). International Tables for X-ray Crystallography, Vol. IV, pp. 149-151. Birmingham: Kynoch Press. (Present distributor Kluwer Academic Publishers, Dordrecht.)
Cromer, D. T. \& Waber, J. T. (1974). International Tables for X-ray Crystallography, Vol. IV, pp. 99-101. Birmingham: Kynoch Press. (Present distributor Kluwer Academic Publishers, Dordrecht.)
DUCHAMP, D. J. (1964). CRYM crystallographic computing system. Am. Crystallogr. Assoc. Meet., Bozeman, Montana. Paper B14, p. 29.
Johnson, C. K. (1976). ORTEPII. Report ORNL-3794, third revision. Oak Ridge National Laboratory, Tennessee, USA.
Thompson, M. E., Baxter, S. M., Bulls, A. R., Burger, B. J., Nolan, M. C., Santarsiero, B. D., Schaefer, W. P. \& Bercaw, J. E. (1987). J. Am. Chem. Soc. 109, 203-219.

Acta Cryst. (1992). C48, 1773-1776

A Silicon-Bridged Bis(substituted Cp) Yttrium Complex

By Richard E. Marsh, William P. Schaefer, E. Bryan Coughlin and John E. Bercaw
Division of Chemistry and Chemical Engineering* and The Beckman Institute, Mail Code 139-74, California Institute of Technology, Pasadena, California 91125, USA

(Received 9 December 1991; accepted 11 February 1992)

Abstract

Bis(tetrahydrofuran)lithium [bis(2-trimethylsilyl-4-tert-butyl- η^{5}-cyclopentadienyl)dimethylsilane]dichloroyttrate, $\left[\mathrm{Li}\left(\mathrm{C}_{4} \mathrm{H}_{8} \mathrm{O}\right)_{2}\right]\left[\mathrm{Y}\left(\mathrm{C}_{26} \mathrm{H}_{48^{-}}\right.\right.$ $\left.\mathrm{Si}_{3}\right) \mathrm{Cl}_{2}$], $M_{r}=755.87$, triclinic, $P \overline{1}, a=13.110$ (8), b $=17.163$ (15), $c=20.623$ (14) $\AA, \alpha=104.02$ (7), $\beta=$ $99.38(5), \quad \gamma=100.24(6)^{\circ}, \quad V=4326$ (6) $\AA^{3}, \quad Z=4$, $D_{x}=1.16 \mathrm{~g} \mathrm{~cm}^{-3}, \quad \lambda($ Mo K $\alpha)=0.71073 \AA, \quad \mu=$ $15.86 \mathrm{~cm}^{-1}, F(000)=1608$, room temperature, $R=$ 0.056 for 6136 reflections with $F_{o}^{2}>3 \sigma\left(F_{o}^{2}\right)$. There are two virtually identical molecules in the asymmetric unit. In each, the Y atom is tetrahedrally coordinated to a substituted Si-bridged bis(cyclopentadienyl) ligand and to two Cl ions in the cleft. The Li atom is $2.35 \AA$ from each Cl ion, and two molecules of tetrahydrofuran are connected to the Li , completing its tetrahedral coordination.

[^0]Introduction. The Ziegler-Natta polymerization of olefins has occupied the attention of chemists for nearly four decades. Recently, the development of homogeneous transition-metal catalyst systems has afforded the possibility of mechanistic investigations into various key steps of polymer initiation, propagation and chain termination. Brintzinger and coworkers have developed a series of ansa-zirconocene catalysts which possess a C_{2} symmetric ligand arrangement about the metal center (Roll, Brintzinger, Rieger \& Zolk, 1990; Wiesenfeldt, Reinmuth, Barsties, Evertz \& Brintzinger, 1989). Moreover, activation of these ansa-zirconocene catalysts with methylalumoxane results in production of highly isospecific polymers. Work in this laboratory has centered on the study of well defined singlecomponent Ziegler-Natta-type catalyst systems (Piers, Shapiro, Bunel \& Bercaw, 1990). We report
(C) 1992 International Union of Crystallography

Table 1. Final heavy-atom coordinates $\left(\times 10^{4}\right)$ and equivalent isotropic displacement parameters

	$\left(\AA^{2} \times 10^{4}\right)$			
	$U_{\text {eq }}=(1 / 3) \sum_{i} \sum_{j} U_{i j} a_{i}{ }^{*} a_{j}{ }^{*} \mathbf{a}_{i} \cdot \mathbf{a}_{j}$.			
	x	y	z	$U_{\text {eq }}$
Ya	1810 (.4)	7217 (.3)	4009 (.3)	432 (2)
Clla	3262 (1)	6960 (1)	3292 (1)	719 (5)
$\mathrm{Cl2a}$	2931 (1)	8756 (1)	4442 (1)	708 (5)
Sila	-400 (1)	6062 (1)	4245 (1)	611 (5)
Si2a	1161 (2)	8070 (1)	5831 (1)	813 (6)
Si3a	372 (1)	5333 (1)	2407 (1)	632 (5)
Cla	-1428 (5)	6446 (4)	4683 (3)	976 (23)
C2a	-793 (5)	4914 (4)	3970 (3)	903 (21)
C3a	978 (4)	6434 (4)	4793 (3)	531 (16)
C4a	1549 (4)	7246 (3)	5231 (3)	525 (17)
C5a	2638 (5)	7228 (4)	5301 (3)	587 (18)
C6a	2789 (5)	6479 (4)	4926 (3)	563 (17)
C7a	1748 (5)	5989 (3)	4610 (3)	571 (18)
C8a	567 (6)	7615 (5)	6447 (3)	1259 (29)
C9a	245 (6)	8639 (4)	5464 (4)	1368 (30)
Cl 0 a	2392 (6)	8882 (4)	6303 (3)	1038 (26)
Clia	3807 (5)	6180 (4)	4988 (4)	696 (21)
$\mathrm{Cl} 2 a$	4745 (5)	6882 (4)	5048 (4)	1049 (26)
Cl3a	3780 (5)	5484 (5)	4385 (4)	1252 (29)
C14a	3948 (5)	5889 (4)	5634 (4)	1177 (26)
C15a	-204 (4)	6555 (3)	3552 (3)	475 (17)
${ }_{\mathrm{Cl}} \mathbf{6}$ a	280 (4)	6335 (3)	2977 (3)	450 (15)
Cl7a	585 (4)	7071 (4)	2782 (3)	508 (16)
Cl8a	295 (4)	7738 (3)	3200 (3)	523 (18)
C19a	-156 (4)	7421 (4)	3682 (3)	529 (17)
C20a	1199 (5)	4727 (3)	2801 (3)	954 (23)
C21a	-985 (5)	4682 (4)	2047 (4)	1240 (29)
C22a	965 (5)	5552 (3)	1698 (3)	902 (23)
C23a	317 (5)	8576 (4)	3081 (3)	679 (20)
C24a	1242 (6)	8841 (4)	2763 (3)	960 (23)
C25a	372 (6)	9235 (4)	3732 (4)	1043 (26)
C26a	-726 (6)	8500 (4)	2585 (4)	1278 (27)
$\mathrm{Y} b$	3053 (.4)	2441 (.3)	867 (.3)	450 (2)
Cllb	2749 (1)	3843 (1)	1553 (1)	642 (4)
$\mathrm{Cl2b}$	4415 (1)	3364 (1)	406 (1)	751 (5)
Sil b	1996 (1)	449 (1)	726 (1)	536 (5)
Si2b	2974 (1)	900 (1)	-942 (1)	725 (6)
Si3b	2180 (1)	2113 (1)	2530 (1)	632 (5)
Clb	2456 (5)	-477 (3)	297 (3)	765 (19)
C 2 b	829 (4)	83 (3)	1066 (3)	627 (18)
C3b	1682 (4)	1105 (3)	156 (3)	441 (16)
C4b	2233 (4)	1382 (3)	-330 (3)	535 (18)
C5b	1854 (4)	2088 (4)	-425 (3)	578 (18)
C6b	1106 (4)	2267 (3)	-28(3)	496 (17)
C 7 b	1026 (4)	1661 (3)	330 (3)	463 (16)
C8b	4245 (5)	652 (4)	-590 (3)	997 (22)
C9b	3356 (5)	1625 (4)	-1452 (3)	1007 (23)
Cl0b	2094 (5)	-67 (4)	- 1534 (3)	1039 (25)
C11b	402 (4)	2873 (3)	-76 (3)	518 (17)
C12b	1022 (5)	3688 (4)	-149 (3)	797 (20)
C13b	-476 (5)	2469 (4)	-728 (3)	795 (20)
C14b	-114(5)	3050 (4)	525 (3)	769 (19)
C15b	3123 (4)	1210 (3)	1392 (3)	465 (16)
Cl6b	3090 (4)	1899 (3)	1949 (3)	464 (17)
C17b	4127 (5)	2438 (3)	2100 (3)	548 (18)
Cl 8 b	4772 (5)	2123 (4)	1669 (3)	534 (18)
C19b	4131 (5)	1370 (3)	1230 (3)	555 (18)
C20b	872 (4)	2259 (3)	2133 (3)	699 (18)
C21b	2823 (5)	3081 (4)	3217 (3)	892 (22)
C22b	1952 (6)	1256 (4)	2931 (3)	1061 (23)
C23b	5959 (5)	2444 (4)	1766 (4)	767 (25)
C24b	6521 (5)	2046 (4)	2261 (4)	1257 (32)
C25b	6284 (4)	3375 (4)	2056 (4)	1076 (30)
C26b	6324 (5)	2187 (4)	1100 (4)	1068 (29)
Lia	4084 (8)	8380 (6)	3729 (5)	776 (34)
O1a	4148 (4)	8946 (4)	3036 (3)	1111 (18)
C27a	4386 (7)	9815 (7)	3176 (6)	1758 (44)
C28a	4541 (11)	9997 (11)	2520 (11)	2677 (77)
C29a	3822 (11)	9301 (14)	2042 (8)	2627 (79)
C30a	3910 (8)	8591 (7)	2320 (6)	1723 (44)
O2a	5548 (4)	8631 (3)	4200 (3)	1040 (19)
C31a	6340 (10)	8477 (9)	3881 (7)	2243 (63)
C32a	7242 (17)	8569 (16)	4334 (10)	3091 (105)
C33a	7130 (14)	8873 (11)	4969 (9)	2576 (83)
C34a	6003 (9)	8994 (5)	4901 (6)	1534 (43)
Lib	4128 (8)	4571 (6)	1161 (6)	792 (33)
O1b	5229 (4)	5223 (3)	1958 (3)	1035 (19)
C27b	6245 (8)	5647 (6)	1925 (5)	1492 (40)

Table 1 (cont.)

	x	y	z	$U_{\text {ca }}$
C28b	6714 (13)	6188 (10)	2621 (10)	2485 (81)
C29b	6127 (15)	5857 (11)	3055 (8)	2715 (90)
C30b	5115 (7)	5376 (6)	2646 (5)	1452 (39)
O2b	3806 (4)	5367 (3)	713 (3)	1018 (17)
C31b	3480 (7)	5239 (5)	-5 (5)	1193 (31)
C32b	2784 (9)	5833 (8)	-63 (7)	1821 (51)
C33b	3178 (10)	6511 (7)	561 (8)	1849 (51)
C34b	3759 (8)	6177 (7)	1041 (5)	1634 (42)

Table 2. Selected bond distances (\AA) and angles $\left({ }^{\circ}\right)$

$\mathrm{Y} a-\mathrm{Cpl} a$	2.383	$\mathrm{Y} b-\mathrm{Cpl} b$	2.396
$\mathrm{Y} a-\mathrm{Cp} 2 a$	2.385	$\mathrm{Y} b-\mathrm{Cp} 2 b$	2.389
$\mathrm{Y} a-\mathrm{Clla}$	2.628 (2)	$\mathrm{Y} b-\mathrm{Cllb}$	2.614 (1)
$\mathrm{Ya}-\mathrm{Cl} 2 a$	2.642 (2)	$\mathrm{Y} b-\mathrm{Cl} 2 b$	2.623 (2)
$\mathrm{Li} a-\mathrm{Cl} 1 a$	2.366 (11)	$\mathrm{Li} b-\mathrm{Cll} b$	2.377 (11)
$\mathrm{Li} a-\mathrm{Cl} 2 a$	2.340 (11)	$\mathrm{Li} b-\mathrm{Cl} 2 b$	2.401 (11)
$\mathrm{Li} a-\mathrm{Ola}$	1.917 (12)	$\mathrm{Li} b-\mathrm{Ol} b$	1.950 (12)
$\mathrm{Li} a-\mathrm{O} 2 a$	1.925 (12)	$\mathrm{Li} b-\mathrm{O} 2 b$	1.893 (12)
Sila-Cla	1.869 (7)	Sil $b-\mathrm{Cl} b$	1.872 (6)
Sila-C2a	1.863 (6)	Sil $b-\mathrm{C} 2 b$	1.858 (6)
Sila-C3a	1.878 (6)	Sil $b-\mathrm{C} 3 b$	1.862 (5)
Sila-Cl5a	1.858 (6)	Sil $b-\mathrm{Cl} 5 b$	1.887 (6)
$\mathrm{Si} 2 a-\mathrm{C} 4 a$	1.845 (6)	$\mathrm{Si} 2 b-\mathrm{C} 4 b$	1.843 (6)
$\mathrm{Si} 2 a-\mathrm{C} 8 \mathrm{a}$	1.850 (8)	Si2 2 - $\mathrm{C} 8 b$	1.869 (7)
Si2a-C9a	1.856 (8)	$\mathrm{Si} 2 b-\mathrm{C} 9 b$	1.868 (7)
$\mathrm{Si} 2 a-\mathrm{Cl} 10 a$	1.878 (7)	$\mathrm{Si} 2 b-\mathrm{Cl} 10 b$	1.859 (7)
Cpla-Ya-Cp2a	122.1	$\mathrm{Cpl} b-\mathrm{Y} b-\mathrm{Cp} 2 b$	122.5
Cpla-Ya-Clla	114.2	$\mathrm{Cp} 1 b-\mathrm{Y} b-\mathrm{Cllb}$	112.4
Cpla-Ya-Cl2a	107.0	$\mathrm{Cpl} b-\mathrm{Y} b-\mathrm{Cl} 2 b$	108.6
Cp2a-Ya-Clla	108.6	$\mathrm{Cp} 2 b-\mathrm{Y} b-\mathrm{Cllb}$	108.1
$\mathrm{Cp} 2 a-\mathrm{Ya}-\mathrm{Cl} 2 a$	114.2	$\mathrm{Cp} 2 b-\mathrm{Y} b-\mathrm{Cl} 2 b$	114.3
$\mathrm{Cl1a-Ya-Cl2a}$	84.6 (0)	$\mathrm{Cl1b-Y}-\mathrm{Cl} 2 b$	84.6 (0)
$\mathrm{Cl} a-\mathrm{Li} a-\mathrm{Cl} 2 a$	97.8 (4)	$\mathrm{Cl1} b-\mathrm{Li} b-\mathrm{Cl} 2 b$	95.1 (4)
Clla-Lia-Ola	113.7 (5)	$\mathrm{Cl1} b-\mathrm{Li} b-\mathrm{Ol} b$	107.9 (5)
$\mathrm{Clla}-\mathrm{Lia}-\mathrm{O} 2 a$	115.5 (5)	$\mathrm{Cl1b-Li} b-\mathrm{O} 2 b$	117.9 (5)
$\mathrm{Cl} 2 a-\mathrm{Li} a-\mathrm{Ola}$	114.3 (5)	$\mathrm{Cl} 2 b-\mathrm{Li} b-\mathrm{Ol} b$	120.3 (5)
$\mathrm{Cl} 2 a-\mathrm{Li} a-\mathrm{O} 2 a$	113.9 (5)	$\mathrm{Cl} 2 b-\mathrm{Li} b-\mathrm{O} 2 b$	113.3 (5)
$\mathrm{Ola}-\mathrm{Li} a-\mathrm{O} 2 a$	102.4 (6)	$\mathrm{O} 1 b-\mathrm{Li} b-\mathrm{O} 2 b$	103.0 (6)
C15a-Sila-C3a	99.1 (3)	$\mathrm{Cl} 5 b-\mathrm{Sil} b-\mathrm{C} 3 b$	99.5 (2)

herein the crystal structure of the C_{2} symmetric complex $\mathrm{rac}-\left(\mathrm{CH}_{3}\right)_{2} \mathrm{Si}\left[2-\mathrm{Si}\left(\mathrm{CH}_{3}\right)_{3}-4-\mathrm{C}\left(\mathrm{CH}_{3}\right)_{3} \mathrm{C}_{5} \mathrm{H}_{2}\right]_{2}-$ $\mathrm{YCl}_{2} \mathrm{Li}\left(\mathrm{OCH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2}\right)_{2}$.

Experimental. A crystal with a most irregular triangular prism shape, $0.63 \times 0.67 \times 1.18 \mathrm{~mm}$, was used for data collection on a CAD-4 diffractometer, with ω scans. 25 reflections with $26<2 \theta<29^{\circ}$ were used for the determination of the cell dimensions. An absorption correction was not applied: ψ scans of six high $\mathcal{\chi}$ reflections suggested corrections of $\pm 7 \%$ to I, but the corrections resulted in a poorer goodness of fit for merging the data. The crystal was somewhat obscured by grease in its capillary, so no analytical absorption correction could be made; $(\sin \theta / \lambda)_{\max }=$ $0.59 \AA^{-1} ; h$ from -15 to $15, k$ from -20 to $20, l$ from 0 to 24 . Three standard reflections ($1 \overline{2} \overline{5}, \overline{3} 24$ and $15 \overline{2}$) showed no variations greater than those predicted by counting statistics. 16018 reflections were measured, of which 15167 were independent. Goodness of fit for merging was 1.35 , and $R_{\text {int }}$ for 372 reflections with exactly two observations was 0.051 . All reflections, F_{o}^{2} positive and negative, were used in solution and refinement of the structure. The structure was solved from a Patterson map, which gave coordinates of Y atoms; remaining atoms were
found by successive structure factor-Fourier calculations. F_{o}^{2} values were used in full-matrix leastsquares refinement, with $w=1 / \sigma^{2}\left(F_{o}^{2}\right)$. H atoms were positioned by calculation ($\mathrm{C}-\mathrm{H}=0.95 \AA$) assuming staggered geometries on methyl groups; H-atom parameters were not refined, but the atoms were repositioned near the conclusion of the refinement. R on $F=0.134$ for 12716 reflections with $F_{o}^{2}>0(w R$ on $F^{2}=0.010$); R on $F=0.056$ for 6136 reflections with $F_{o}^{2}>3 \sigma\left(F_{o}^{2}\right)\left(w R\right.$ on $\left.F^{2}=0.007\right)$; and $S=1.33$ for 15167 reflections and 775 parameters. Variances [$\left.\sigma^{2}\left(F_{o}^{2}\right)\right]$ were derived from counting statistics plus an additional term, $(0.014 I)^{2}$; variances of the merged

Fig. 1. An ORTEPII (Johnson, 1976) drawing showing the atomic numbering systems of (a) molecule A ($\mathrm{Cl} 6 a$, between $\mathrm{Cl} 5 a$ and $\mathrm{Cl} 7 a$, is not labeled) and (b) molecule B ($\mathrm{Cl} 6 b$ not labeled). Atoms are shown as 50% probability ellipsoids, with H atoms omitted.
data by propagation of e.s.d. plus another additional term, $(0.014 \bar{I})^{2}$. In the final cycle, maximum shift/ e.s.d. was 0.09 in the Y molecule, and 1.56 for y of C32 in thf a [several parameters of this thf group continued to shift (with no change in the residuals) for at least five full-matrix cycles after the remainder of the structure had settled down, presumably because of disorder]. In the final difference map one peak of $1.01 \mathrm{e} \AA^{-3}$ was found near $\mathrm{Y} a$; other peaks were $\pm 0.86 \mathrm{e} \AA^{-3}$. Scattering factors were taken from Cromer \& Waber (1974) and dispersion corrections $\left(f^{\prime}\right)$ from Cromer (1974). Programs used were those of the CRYM crystallographic computing system (Duchamp, 1964) and ORTEPII (Johnson, 1976). Final heavy-atom parameters are given in Table 1.*

Discussion. Fig. 1 shows labeled drawings of molecules A and B; selected distances and angles for these are given in Table 2. Because the two molecules are so similar, this discussion uses average distances with the scatter standard deviation given in square brackets. Fig. 2 shows the unit-cell packing. The

Fig. 2. An ORTEPII (Johnson, 1976) view of the contents of a unit cell, with one unit cell outlined. Y atoms have their principal ellipsoids outlined. Atoms are shown as 50% probability ellipsoids and H atoms are omitted. The c axis is horizontal and the view is perpendicular to the $b c$ plane. The A molecules are closer to the center of the cell and the B molecules are in the upper-left and lower-right corners.
centroids of the Cp rings are 2.388 [6] \AA from the Y atoms, but the Cp planes are not perpendicular to the $\mathrm{Y}-\mathrm{Cp}$ vectors. $\mathrm{Y}-\mathrm{C}(\mathrm{Cp}$ ring) distances range from 2.585 (5) to 2.817 (6) \AA, with the C atoms closest to the Si bridge being closest to Y. This effect is caused by the bridging Si atom; it 'pinches' the Cp rings together and the Y atom can no longer fit between them perfectly. This effect is also seen in the angle between the two Cp planes: this is $113(4)^{\circ}$, whereas the $\mathrm{Cpl}-\mathrm{Y}-\mathrm{Cp} 2$ angle is 122.3°. \{The $\mathrm{Cp}(\mathrm{C})-\mathrm{Sil}-\mathrm{Cp}(\mathrm{C})$ angle is $\left.99.3[3]^{\circ}.\right\}$ Other distances in the Y molecule are normal: $\mathrm{Y}-\mathrm{Cl}$ 2.627 [12], $\mathrm{Si}-\mathrm{C} \quad 1.863$ [12], $\mathrm{C}-\mathrm{C} \quad(\mathrm{Cp}$ rings) 1.422 [17] \AA. In each molecule there is a strain evidenced by two normal $\mathrm{C}(\mathrm{Cp})-\mathrm{Si}-\mathrm{CH}_{3}$ angles of $108.4[4]^{\circ}$ and a third larger angle of $117.0[10]^{\circ}$, to the methyl C atom near the other Cp ring. This strain appears in all four independent Cp rings and reflects a steric crowding between the $-\mathrm{Si}\left(\mathrm{CH}_{3}\right)_{3}$ group and the rest of the molecule: from the affected CH_{3} group, $\mathrm{C}-\mathrm{C}$ distances are $3.81[4] \AA$ to a methyl C atom on the Si bridge (Cl or C 2), 4.02 [5] \AA to a methyl C atom on the ${ }^{\mathrm{C}} \mathrm{Bu}$ group of the opposite bridge and only 3.68 [3] \AA to a Cp C atom in the opposite Cp ring. The 'radius' of a $-\mathrm{CH}_{3}$ group is taken as $2.0 \AA$; thus the first contact is $0.09 \AA$ short while the second is at just the van der Waals distance. The $3.68 \AA$ contact is short enough to imply the severe strain of bending a $\mathrm{C}-\mathrm{Si}-\mathrm{C}$ bond by 8° or so.

The $\mathrm{Li}(\mathrm{thf})_{2}^{+}$group is joined to the two Cl atoms of the Y molecule, with $\mathrm{Li}-\mathrm{Cl}$ distances averaging
$2.371[25] \AA$, almost exactly the sum of the crystal radii for Li^{+}and Cl^{-}and shorter than the $\mathrm{Li}-\mathrm{C}$ distance ($2.57 \AA$) in LiCl (Wells, 1962). Coordination about the Li^{+}atom is approximately tetrahedral (Fig. 1), with normal $\mathrm{Li}-\mathrm{O}$ distances $\{1.92[2] \AA\}$. The thf molecules have large apparent thermal motions, indicating a moderate disorder.

This work has been supported by the USDOE Office of Basic Energy Sciences (Grant No. DE-FG03-85ER113431) and by Exxon Chemicals Americas.

References

Cromer, D. T. (1974). International Tables for X-ray Crystallography, Vol. IV, pp. 149-151. Birmingham: Kynoch Press. (Present distributor Kluwer Academic Publishers, Dordrecht.)
Cromer, D. T. \& Waber, J. T. (1974). International Tables for X-ray Crystallography, Vol. IV, pp. 99-101. Birmingham: Kynoch Press. (Present distributor Kluwer Academic Publishers, Dordrecht.)
Duchamp, D. J. (1964). CRYM crystallographic computing system. Am. Crystallogr. Assoc. Meet., Bozeman, Montana. Paper B14, p. 29.
Johnson, C. K. (1976). ORTEPII. Report ORNL-3794, revised. Oak Ridge National Laboratory, Tennessee, USA.
Piers, W. E., Shapiro, P. J., Bunel, E. E. \& Bercaw, J. E. (1990). Synlett, 2, 74-84.

Roll, W., Brintzinger, H. H., Rieger, B. \& Zolk, R. (1990). Angew. Chem. Int. Ed. Engl. 29, 279-280.
Weles, A. F. (1962). Structural Inorganic Chemistry, 3rd edition, p. 357. Oxford Univ. Press.

Wiesenfeldt, H., Reinmuth, A., Barsties, E., Evertz, K. \& Brintzinger, H. H. (1989). J. Organomet. Chem. 369, 359-370.

Acta Cryst. (1992). C48, 1776-1778

A Bis(pyrazolyl)(bipyridyl)platinum Complex

By William P. Schaefer, William B. Connck, Vincent M. Miskowski and Harry B. Gray
Division of Chemistry and Chemical Engineering* and The Beckman Institute, Mail Code 139-74, California Institute of Technology, Pasadena, California 91125, USA

(Received 26 December 1991; accepted 11 February 1992)

Abstract

Dimethyl-2,2'-bipyridyl)bis(3,5-dimethylpyrazolium)platinum(II) 0.5 -tetrahydrofuran solvate monohydrate, $\quad\left[\mathrm{Pt}\left(\mathrm{C}_{5} \mathrm{H}_{7} \mathrm{~N}_{2}\right)_{2}\left(\mathrm{C}_{12} \mathrm{H}_{12^{-}}\right.\right.$ $\left.\left.\mathrm{N}_{2}\right)\right] .0 .5 \mathrm{C}_{4} \mathrm{H}_{8} \mathrm{O} . \mathrm{H}_{2} \mathrm{O}, M_{r}=623.65$, monoclinic, $P 2_{1} / n$, $a=8.625$ (2), $b=20.593$ (8), $c=14.451$ (4) $\AA, \quad \beta=$ $90.32(2)^{\circ}, \quad V=2566.7(14) \AA^{3}, \quad Z=4, \quad D_{x}=$

^[* Contribution No. 8555.]

[^0]: * Contribution No. 8539.

